Search results for "Umbilical Vein"

showing 10 items of 194 documents

Homocysteine Induces Apoptosis of Human Umbilical Vein Endothelial Cells via Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

2017

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspa…

0301 basic medicineAgingArticle SubjectApoptosis030204 cardiovascular system & hematologyTransfectionBiochemistryUmbilical vein03 medical and health sciences0302 clinical medicineRisk FactorsHuman Umbilical Vein Endothelial CellsHumanslcsh:QH573-671Protein kinase AEndoplasmic Reticulum Chaperone BiPHomocysteinebiologylcsh:CytologyKinaseEndoplasmic reticulumCytochrome cCell BiologyGeneral MedicineEndoplasmic Reticulum StressMitochondriaCell biology030104 developmental biologyApoptosiscardiovascular systemUnfolded protein responsebiology.proteinPhosphorylationResearch ArticleOxidative Medicine and Cellular Longevity
researchProduct

Indicaxanthin from Opuntia ficus indica (L. Mill) Inhibits Oxidized LDL-Mediated Human Endothelial Cell Dysfunction through Inhibition of NF-κB Activ…

2019

Oxidized low-density lipoproteins (oxLDL) play a pivotal role in the etiopathogenesis of atherosclerosis through the activation of inflammatory signaling events eventually leading to endothelial dysfunction and senescence. In the present work, we investigated the effects of indicaxanthin, a bioavailable, redox-modulating phytochemical from Opuntia ficus indica fruits, with anti-inflammatory activity, against oxLDL-induced endothelial dysfunction. Human umbilical vein cord cells (HUVEC) were stimulated with human oxLDL, and the effects of indicaxanthin were evaluated in a range between 5 and 20 μM, consistent with its plasma level after a fruit meal (7 μM). Pretreatment with indicaxanthin si…

0301 basic medicineAgingArticle SubjectTranscription GeneticCell SurvivalPyridineHuman Umbilical Vein Endothelial Cell030204 cardiovascular system & hematologyPharmacologyBiochemistryUmbilical vein03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/10 - BiochimicamedicineRNA MessengerReactive Nitrogen SpecieEndothelial dysfunctionlcsh:QH573-671CytotoxicityReactive nitrogen specieschemistry.chemical_classificationReactive oxygen specieslcsh:CytologyNF-kappa BOpuntiaHydrogen PeroxideCell BiologyGeneral MedicineNFKB1medicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaUp-RegulationLipoproteins LDLEndothelial stem cell030104 developmental biologychemistryCell Adhesion MoleculeBetaxanthinThiobarbituric Acid Reactive SubstanceReactive Oxygen SpecieOxidation-ReductionIndicaxanthinATP Binding Cassette Transporter 1HumanOxidative Medicine and Cellular Longevity
researchProduct

Estradiol, acting through ERα, induces endothelial non-classic renin-angiotensin system increasing angiotensin 1–7 production

2016

Intracellular renin-angiotensin system (RAS) can operate independently of the circulating RAS. Estrogens provide protective effects by modulating the RAS. Our aim was to investigate the effect of estradiol (E2) on angiotensin converting enzymes (ACE) 1 and ACE2 expression and activities in human endothelial cells (HUVEC), and the role of estrogen receptors (ER). The results confirmed the presence of active intracellular RAS in HUVEC. Physiological concentrations of E2 induced a concentration-dependent increase of ACE1 and ACE2 mRNA expression and ACE1, but not ACE2, protein levels. ACE1 and ACE2 enzymatic activities were also induced with E2. These effects were mediated through ERα activati…

0301 basic medicineAgonistmedicine.medical_specialtymedicine.drug_classEstrogen receptorPeptidyl-Dipeptidase A030204 cardiovascular system & hematologyBiologyBiochemistryEstrogen Receptor AntagonistsCiencias Biológicas03 medical and health sciences0302 clinical medicineEndocrinologyPiperidinesInternal medicineRenin–angiotensin systemHuman Umbilical Vein Endothelial CellsmedicineHumansFulvestrantMolecular BiologyESTROGEN RECEPTORDose-Response Relationship DrugEstradiolEstrogen Receptor alphaANGIOTENSIN CONVERTING ENZYMESBioquímica y Biología MolecularRENIN ANGIOTENSIN SYSTEMPeptide FragmentsEndothelial stem cellESTROGEN030104 developmental biologyEndocrinologyGene Expression RegulationEstrogenENDOTHELIAL CELLPyrazolesAngiotensin-Converting Enzyme 2Estrogen Receptor AntagonistsAngiotensin IEstrogen receptor alphaCIENCIAS NATURALES Y EXACTAShormones hormone substitutes and hormone antagonistsIntracellularMolecular and Cellular Endocrinology
researchProduct

Tissue Factor-Expressing Tumor-Derived Extracellular Vesicles Activate Quiescent Endothelial Cells via Protease-Activated Receptor-1

2017

Tissue factor (TF)-expressing tumor-derived extracellular vesicles (EVs) can promote metastasis and pre-metastatic niche formation, but the mechanisms by which this occurs remain largely unknown. We hypothesized that generation of activated factor X (FXa) by TF expressed on tumor-derived EV could activate protease-activated receptors (PARs) on non-activated endothelial cells to induce a pro-adhesive and pro-inflammatory phenotype. We obtained EV from TF-expressing breast (MDA-MB-231) and pancreatic (BxPC3 and Capan-1) tumor cell lines. We measured expression of E-selectin and secretion of interleukin-8 (IL-8) in human umbilical vein endothelial cells after exposure to EV and various immunol…

0301 basic medicineCancer Researchcell-derived microparticlesprotease-activated receptorsexosomesBiologylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenslcsh:RC254-282In vitroMicrovesiclesUmbilical vein3. Good healthCell biology03 medical and health sciencesTissue factor030104 developmental biologyOncologyDownregulation and upregulationthromboplastincancerThromboplastinSecretionReceptorOriginal ResearchFrontiers in Oncology
researchProduct

Extracellular histones activate autophagy and apoptosis via mTOR signaling in human endothelial cells.

2018

Circulating histones have been proposed as targets for therapy in sepsis and hyperinflammatory symptoms. However, the proposed strategies have failed in clinical trials. Although different mechanisms for histone-related cytotoxicity are being explored, those mediated by circulating histones are not fully understood. Extracellular histones induce endothelial cell death, thereby contributing to the pathogenesis of complex diseases such as sepsis and septic shock. Therefore, the comprehension of cellular responses triggered by histones is capital to design effective therapeutic strategies. Here we report how extracellular histones induce autophagy and apoptosis in a dose-dependent manner in cu…

0301 basic medicineCell SurvivalEndothelial cellsFisiologiaApoptosisAMP-Activated Protein KinasesHistones03 medical and health sciencesExtracellularAutophagyHuman Umbilical Vein Endothelial CellsAutophagy-Related Protein-1 HomologHumansMolecular BiologyProtein kinase BPI3K/AKT/mTOR pathwaybiologyDose-Response Relationship DrugChemistryTOR Serine-Threonine KinasesAutophagyIntracellular Signaling Peptides and ProteinsAMPKNuclear ProteinsCirculating histonesCell biologyToll-like receptorsEndothelial stem cell030104 developmental biologyHistoneApoptosisbiology.proteinMolecular MedicineProto-Oncogene Proteins c-aktSignal TransductionBiochimica et biophysica acta. Molecular basis of disease
researchProduct

Microtubule disruption changes endothelial cell mechanics and adhesion

2019

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

0301 basic medicineCell biologyIntravital MicroscopyScienceConfocalCellBiophysicsCell Culture Techniques02 engineering and technologyMicroscopy Atomic ForceMechanotransduction CellularMicrotubulesArticleUmbilical veinCell Line03 medical and health sciencesMicrotubuleCell AdhesionHuman Umbilical Vein Endothelial CellsFluorescence microscopemedicineHumansCytoskeletonCytoskeletonMicroscopy ConfocalMultidisciplinaryDose-Response Relationship DrugChemistryPhysicsQRMechanicsAdhesion021001 nanoscience & nanotechnologyMaterials scienceApplied physicsEndothelial stem cell030104 developmental biologymedicine.anatomical_structureMicroscopy FluorescenceMedicineBiomaterials - cellsColchicine0210 nano-technologyBiological physicsScientific Reports
researchProduct

Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures

2016

Strategies for improvement of angiogenesis and vasculogenesis using different cells and materials are paramount aims in the field of bone tissue engineering. Thereby, the interaction between different cell types and scaffold materials is crucial for growth, differentiation, and long-term outcomes of tissue-engineered constructs. In this study, we evaluated the interaction of osteoblasts and endothelial cells in three-dimensional tissue-engineered constructs using beta tricalciumphosphate (β-TCP, [s-Ca3 (PO4 )2 ]) and calcium-deficient hydroxyapatite (CDHA, [Ca9 (PO4 )5 (HPO4 )OH]) ceramics as scaffolds. We focused on initial cell organization, cell proliferation, and differential expression…

0301 basic medicineCell typeMaterials scienceCell growthAngiogenesisBiomedical EngineeringOsteoblast02 engineering and technology021001 nanoscience & nanotechnologyUmbilical veinCell biologyBiomaterials03 medical and health sciences030104 developmental biologymedicine.anatomical_structureVasculogenesisCell cultureGene expressionmedicine0210 nano-technologyBiomedical engineeringJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

CNS Macrophages Control Neurovascular Development via CD95L.

2017

The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific del…

0301 basic medicineFas Ligand ProteinAngiogenesisMorphogenesisvesselmicrogliaBiologyGeneral Biochemistry Genetics and Molecular BiologyRetina03 medical and health sciencesangiogenesisMiceCell surface receptorExtracellularmedicineHuman Umbilical Vein Endothelial CellsNeuritesAnimalsHumansfas Receptorlcsh:QH301-705.5Cell ProliferationRetinaMicrogliaKinaseMacrophagesneurovascular developmentBrainNeurovascular bundle030104 developmental biologymedicine.anatomical_structurecortexsrc-Family Kinasesnervous systemlcsh:Biology (General)ImmunologySynapsesCD95CD95LNeuroscienceCNS macrophagesProtein BindingSignal TransductionCell reports
researchProduct

Tetraspanin CD151 Promotes Initial Events in Human Cytomegalovirus Infection.

2016

ABSTRACT Human cytomegalovirus (HCMV), a betaherpesvirus, can cause life-threatening disease in immunocompromised individuals. Viral envelope glycoproteins that mediate binding to and penetration into target cells have been identified previously. In contrast, cellular proteins supporting HCMV during entry are largely unknown. In order to systematically identify host genes affecting initial steps of HCMV infection, a targeted RNA interference screen of 96 cellular genes was performed in endothelial cells by use of a virus strain expressing the full set of known glycoprotein H and L (gH/gL) complexes. The approach yielded five proviral host factors from different protein families and eight an…

0301 basic medicineHuman cytomegalovirusvirusesImmunologyCytomegalovirusBiologyTetraspanin 24MicrobiologyVirus03 medical and health sciencesViral envelopeTetraspaninViral Envelope ProteinsRNA interferenceVirologymedicineHuman Umbilical Vein Endothelial CellsHumansRNA Small InterferingTropismCells CulturedHost factorchemistry.chemical_classificationFibroblastsVirus Internalizationmedicine.diseaseVirologyVirus-Cell Interactions030104 developmental biologychemistryInsect ScienceRNA InterferenceGlycoproteinGene DeletionJournal of virology
researchProduct

Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.

2018

Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-epsilon-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Impl…

0301 basic medicineKeratinocytesMaleBiocompatibilityAngiogenesisPolymersBiomedical EngineeringMedicine (miscellaneous)HydroxybutyratesNeovascularization PhysiologicHuman skinhuman skin xenograftBiocompatible Materials02 engineering and technologyNodMice SCIDpoly(hydroxybutyrate)Biomaterials03 medical and health sciencesIn vivoMice Inbred NODProhibitinsHuman Umbilical Vein Endothelial CellsAnimalsHumansRats WistarelectrospinningCell ProliferationSkin ArtificialTissue EngineeringTissue ScaffoldsChemistryMacrophagestechnology industry and agricultureCell PolarityCell DifferentiationM2 polarizationDermisSkin Transplantation021001 nanoscience & nanotechnologyM2 MacrophageIn vitro030104 developmental biologyskin equivalentsEpidermis0210 nano-technologyBiomedical engineeringJournal of tissue engineering and regenerative medicine
researchProduct